3.633 \(\int \frac{a B+b B \cos (c+d x)}{(a+b \cos (c+d x))^{3/2} \sqrt{\sec (c+d x)}} \, dx\)

Optimal. Leaf size=137 \[ -\frac{2 B \sqrt{a+b} \sqrt{\cos (c+d x)} \csc (c+d x) \sqrt{\frac{a (1-\sec (c+d x))}{a+b}} \sqrt{\frac{a (\sec (c+d x)+1)}{a-b}} \Pi \left (\frac{a+b}{b};\sin ^{-1}\left (\frac{\sqrt{a+b \cos (c+d x)}}{\sqrt{a+b} \sqrt{\cos (c+d x)}}\right )|-\frac{a+b}{a-b}\right )}{b d \sqrt{\sec (c+d x)}} \]

[Out]

(-2*Sqrt[a + b]*B*Sqrt[Cos[c + d*x]]*Csc[c + d*x]*EllipticPi[(a + b)/b, ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[
a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x
]))/(a - b)])/(b*d*Sqrt[Sec[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.155048, antiderivative size = 137, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 38, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.079, Rules used = {21, 4222, 2809} \[ -\frac{2 B \sqrt{a+b} \sqrt{\cos (c+d x)} \csc (c+d x) \sqrt{\frac{a (1-\sec (c+d x))}{a+b}} \sqrt{\frac{a (\sec (c+d x)+1)}{a-b}} \Pi \left (\frac{a+b}{b};\sin ^{-1}\left (\frac{\sqrt{a+b \cos (c+d x)}}{\sqrt{a+b} \sqrt{\cos (c+d x)}}\right )|-\frac{a+b}{a-b}\right )}{b d \sqrt{\sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(a*B + b*B*Cos[c + d*x])/((a + b*Cos[c + d*x])^(3/2)*Sqrt[Sec[c + d*x]]),x]

[Out]

(-2*Sqrt[a + b]*B*Sqrt[Cos[c + d*x]]*Csc[c + d*x]*EllipticPi[(a + b)/b, ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[
a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x
]))/(a - b)])/(b*d*Sqrt[Sec[c + d*x]])

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 4222

Int[(csc[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Sin[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u,
 x]

Rule 2809

Int[Sqrt[(b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp[(2*b*Tan
[e + f*x]*Rt[(c + d)/b, 2]*Sqrt[(c*(1 + Csc[e + f*x]))/(c - d)]*Sqrt[(c*(1 - Csc[e + f*x]))/(c + d)]*EllipticP
i[(c + d)/d, ArcSin[Sqrt[c + d*Sin[e + f*x]]/(Sqrt[b*Sin[e + f*x]]*Rt[(c + d)/b, 2])], -((c + d)/(c - d))])/(d
*f), x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2, 0] && PosQ[(c + d)/b]

Rubi steps

\begin{align*} \int \frac{a B+b B \cos (c+d x)}{(a+b \cos (c+d x))^{3/2} \sqrt{\sec (c+d x)}} \, dx &=B \int \frac{1}{\sqrt{a+b \cos (c+d x)} \sqrt{\sec (c+d x)}} \, dx\\ &=\left (B \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sqrt{\cos (c+d x)}}{\sqrt{a+b \cos (c+d x)}} \, dx\\ &=-\frac{2 \sqrt{a+b} B \sqrt{\cos (c+d x)} \csc (c+d x) \Pi \left (\frac{a+b}{b};\sin ^{-1}\left (\frac{\sqrt{a+b \cos (c+d x)}}{\sqrt{a+b} \sqrt{\cos (c+d x)}}\right )|-\frac{a+b}{a-b}\right ) \sqrt{\frac{a (1-\sec (c+d x))}{a+b}} \sqrt{\frac{a (1+\sec (c+d x))}{a-b}}}{b d \sqrt{\sec (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.178368, size = 149, normalized size = 1.09 \[ -\frac{2 B \sqrt{\frac{\cos (c+d x)}{\cos (c+d x)+1}} \sqrt{\sec (c+d x)+1} \sqrt{\frac{a+b \cos (c+d x)}{(a+b) (\cos (c+d x)+1)}} \left (F\left (\sin ^{-1}\left (\tan \left (\frac{1}{2} (c+d x)\right )\right )|\frac{b-a}{a+b}\right )+2 \Pi \left (-1;-\sin ^{-1}\left (\tan \left (\frac{1}{2} (c+d x)\right )\right )|\frac{b-a}{a+b}\right )\right )}{d \sqrt{\frac{1}{\cos (c+d x)+1}} \sqrt{a+b \cos (c+d x)}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a*B + b*B*Cos[c + d*x])/((a + b*Cos[c + d*x])^(3/2)*Sqrt[Sec[c + d*x]]),x]

[Out]

(-2*B*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*(EllipticF
[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)] + 2*EllipticPi[-1, -ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)])*
Sqrt[1 + Sec[c + d*x]])/(d*Sqrt[(1 + Cos[c + d*x])^(-1)]*Sqrt[a + b*Cos[c + d*x]])

________________________________________________________________________________________

Maple [A]  time = 0.642, size = 144, normalized size = 1.1 \begin{align*} 2\,{\frac{B}{d\sqrt{a+b\cos \left ( dx+c \right ) }\sqrt{ \left ( \cos \left ( dx+c \right ) \right ) ^{-1}}} \left ({\it EllipticF} \left ({\frac{-1+\cos \left ( dx+c \right ) }{\sin \left ( dx+c \right ) }},\sqrt{-{\frac{a-b}{a+b}}} \right ) -2\,{\it EllipticPi} \left ({\frac{-1+\cos \left ( dx+c \right ) }{\sin \left ( dx+c \right ) }},-1,\sqrt{-{\frac{a-b}{a+b}}} \right ) \right ) \sqrt{{\frac{a+b\cos \left ( dx+c \right ) }{ \left ( a+b \right ) \left ( 1+\cos \left ( dx+c \right ) \right ) }}}{\frac{1}{\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*B+b*B*cos(d*x+c))/(a+b*cos(d*x+c))^(3/2)/sec(d*x+c)^(1/2),x)

[Out]

2*B/d/(a+b*cos(d*x+c))^(1/2)*(EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))-2*EllipticPi((-1+cos(
d*x+c))/sin(d*x+c),-1,(-(a-b)/(a+b))^(1/2)))*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)/(1/cos(d*x+c))^(1
/2)/(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{B b \cos \left (d x + c\right ) + B a}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac{3}{2}} \sqrt{\sec \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*B+b*B*cos(d*x+c))/(a+b*cos(d*x+c))^(3/2)/sec(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((B*b*cos(d*x + c) + B*a)/((b*cos(d*x + c) + a)^(3/2)*sqrt(sec(d*x + c))), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{B}{\sqrt{b \cos \left (d x + c\right ) + a} \sqrt{\sec \left (d x + c\right )}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*B+b*B*cos(d*x+c))/(a+b*cos(d*x+c))^(3/2)/sec(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

integral(B/(sqrt(b*cos(d*x + c) + a)*sqrt(sec(d*x + c))), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*B+b*B*cos(d*x+c))/(a+b*cos(d*x+c))**(3/2)/sec(d*x+c)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{B b \cos \left (d x + c\right ) + B a}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac{3}{2}} \sqrt{\sec \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*B+b*B*cos(d*x+c))/(a+b*cos(d*x+c))^(3/2)/sec(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((B*b*cos(d*x + c) + B*a)/((b*cos(d*x + c) + a)^(3/2)*sqrt(sec(d*x + c))), x)